細胞內(nèi)的“哨兵系統(tǒng)”:解碼NOD樣受體如何調(diào)控健康與疾病
細胞內(nèi)的“哨兵系統(tǒng)”:解碼NOD樣受體如何調(diào)控健康與疾病
1. NOD樣受體家族簡介
NOD樣受體(NLR)蛋白家族是一組模式識別受體(PRR),因其在維持組織穩(wěn)態(tài)和通過檢測病原體相關(guān)分子模式(PAMP)和損傷相關(guān)分子模式(DAMP)抵御細菌、病毒和真菌的感染方面的核心作用而廣受關(guān)注。
1.1 NLR家族結(jié)構(gòu)
NLR蛋白家族的成員具有許多共同的結(jié)構(gòu)特征。它們都具有參與配體識別的C端亮氨酸重復(fù)序列(LRR)結(jié)構(gòu)域、促進自寡聚化和三磷酸腺苷依賴性激活的中心核苷酸結(jié)合寡聚化結(jié)構(gòu)域(NACHT),以及可變的N端效應(yīng)結(jié)構(gòu)域,該結(jié)構(gòu)域與接頭分子和下游效應(yīng)子結(jié)合以介導(dǎo)信號轉(zhuǎn)導(dǎo)。N端效應(yīng)結(jié)構(gòu)域是NLRs中最顯著的組成部分,它與各種接頭分子和下游效應(yīng)子結(jié)合以介導(dǎo)信號轉(zhuǎn)導(dǎo),根據(jù)獨特的功能特征可分為五個亞家族:NLRA、NLRB、NLRC、NLRP和NLRX1。
圖1 NLR家族中各成員的蛋白質(zhì)結(jié)構(gòu)示意圖
(圖片源于《Int J Mol Sci》[1])
1.2 NLR家族功能
NLRs分布在胞質(zhì)溶膠中,可識別來自微生物病原體(肽聚糖、鞭毛蛋白、病毒RNA、真菌菌絲等)、宿主細胞(ATP、膽固醇晶體、尿酸等)和環(huán)境來源(明礬、石棉、二氧化硅、合金顆粒、紫外線輻射、皮膚刺激物等)的各種配體。大多數(shù)NLRs充當PRRs,識別上述配體并激活炎癥反應(yīng)。然而,一些NLRs可能不充當PRRs,而是對干擾素等細胞因子做出反應(yīng)。激活的NLRs表現(xiàn)出各種功能,可分為四大類:炎癥小體形成、信號轉(zhuǎn)導(dǎo)、轉(zhuǎn)錄激活和自噬。
1.3 NLR信號傳導(dǎo)途徑
NLR家族的信號機制相對保守。在NLRs與配體特異性結(jié)合后,NACHT結(jié)構(gòu)域自寡聚化,隨后發(fā)生半胱天冬酶募集結(jié)構(gòu)域(CARD)-CARD相互作用。然后,寡聚化NLRs蛋白與絲氨酸/蘇氨酸受體相互作用蛋白2激酶(RIPK2)相互作用。RIPK2通過IKK和轉(zhuǎn)化生長因子β活化激酶1(TAK1)誘導(dǎo)NF-κB和MAPK信號通路的激活,從而促進促炎基因的轉(zhuǎn)錄。此外,多種信號通路,包括NOD1/TNF受體相關(guān)因子3(TRAF3)通路、NOD2/線粒體抗病毒信號傳導(dǎo)(MAVS)蛋白通路和NOD蛋白/自噬相關(guān)蛋白(ATG)通路,可促進宿主防御和自噬降解。
1.4 NLRP3炎性小體
炎性小體是一種寡聚蛋白復(fù)合物,由三部分組成:NLR分子、效應(yīng)分子和偶聯(lián)分子。在NLR家族中,有幾個成員參與炎性小體的形成,包括NLRP1、NLRP2、NLRP3、NLRP6、NLRP7、NLRP12、NLRC4和NAIP。NLRP3炎性小體是近年來研究最廣泛的炎性小體之一。響應(yīng)于PAMP/DAMP,二聚化的NLRP3分子聚合兩個PYD效應(yīng)結(jié)構(gòu)域,激活含有CARD的細胞死亡相關(guān)斑點樣蛋白,并通過募集pro-caspase-1促進caspase-1的自催化激活。Caspase-1將兩種非活性細胞因子前體(pro-IL-1β和pro-IL-18)分別切割成活性IL-1β和IL-18。在某些情況下,caspase-1還可以裂解gasdermin D,產(chǎn)生N末端切割產(chǎn)物,引發(fā)一種稱為細胞焦亡的特定類型的炎癥性死亡。
圖2 NOD1、NOD2和NLRP3信號通路的簡化表示
(圖片源于《Front Immunol》[2])
2. NLR家族與癌癥的相關(guān)研究
NLR家族作為先天免疫系統(tǒng)中的重要PRR,在癌癥研究中備受關(guān)注。產(chǎn)腸毒素脆弱擬桿菌(ETBF)通過分泌與NOD1結(jié)合的BFT-1促進乳腺癌細胞的干性和化療耐藥性[3]。抑制NOD1通過靶向乳腺癌干細胞增加乳腺癌的化學(xué)敏感性。轉(zhuǎn)錄因子HOXC10激活NOD1/ERK信號通路,重新編程上皮間質(zhì)轉(zhuǎn)化和骨微環(huán)境,促進KRAS突變肺癌骨轉(zhuǎn)移[4]。BMI1原癌基因誘導(dǎo)NLRC5的泛素化和蛋白質(zhì)降解,并抑制HLA I類表達,這可能有助于非小細胞肺癌(NSCLC)的免疫逃逸[5]。藥物激活NLRC5可增加HLA I類的表達,可有效治療乳腺癌[6]。Nlrp12缺陷小鼠容易誘發(fā)結(jié)腸炎癥和腫瘤,這與炎癥細胞因子、趨化因子和致瘤因子的產(chǎn)生增加有關(guān)[7]。雌激素受體可以通過靶向NLRs來調(diào)節(jié)癌癥中的Wnt/β-catenin信號通路[8]。NLRP1表達減少會導(dǎo)致癌癥進展,其異常表達與對多種抗腫瘤藥物和小化合物的敏感性降低有關(guān)[9]。高NLRP1/NLRP3表達會促進免疫細胞浸潤和胃癌預(yù)后不良[10]。NLR家族在腫瘤微環(huán)境中的雙重作用,使其成為癌癥免疫治療和生物標志物開發(fā)的潛在靶點。
圖3 BMI1與NLRC5結(jié)合促進NSCLC的免疫逃逸
(圖片源于《Kaohsiung J Med Sci》[5])
3. NLR家族與自身免疫疾病的相關(guān)研究
越來越多的證據(jù)表明,NLRs參與了多種自身免疫性疾病的發(fā)生和發(fā)展。細菌暴露可能會增加系統(tǒng)性紅斑狼瘡(SLE)免疫抑制劑初治患者單核細胞中NOD2的表達,從而導(dǎo)致PBMC的異常激活和促炎細胞因子的產(chǎn)生,可能加劇SLE[11]。SLE患者PBMC中NLRP12表達水平較低,與IFNA表達和疾病活動性呈負相關(guān)[12]。NLRP3多態(tài)性與SLE疾病活動度增加和血清生物標志物(C4、IL-1β和IFN-γ)表達相關(guān)[13]。在咪喹莫特誘導(dǎo)的銀屑病樣小鼠模型中,GSDMD敲低抑制NLR通路,并伴有NLRP3、NOD1、NOD2和PYCARD蛋白水平降低,改善了皮膚病變的嚴重程度,減輕了紅斑、表皮厚度和炎癥細胞浸潤[14]。NB-UVB光療有效調(diào)節(jié)NOD2表達,改善銀屑病患者的臨床和組織病理結(jié)局[15]。中樞神經(jīng)系統(tǒng)中的肽聚糖通過NOD1、NOD2和RIP2介導(dǎo)的途徑激活浸潤的樹突狀細胞,參與實驗性自身免疫性腦脊髓炎(多發(fā)性硬化癥模型)的發(fā)病機制[16]。這些發(fā)現(xiàn)提示NLRs抑制劑可能有助于自身免疫疾病的治療。
圖4 NLRP12可抑制IFN并減緩狼瘡腎炎進展
(圖片源于《J Clin Invest》[12])
4. NLR家族與腸道疾病的相關(guān)研究
近年來,多項研究揭示了NLRs在腸道炎癥性疾病中的顯著影響。NOD2的功能喪失突變與人類克羅恩?。?/span>CD)密切相關(guān)[17]。NOD2-/-小鼠對2,4,6-三硝基苯磺酸誘發(fā)結(jié)腸炎的易感性增加[18]。NOD2信號通過識別腸道微生物群和促進IL-15產(chǎn)生維持腸道上皮內(nèi)淋巴細胞數(shù)量并調(diào)控CD易感性。NOD2在調(diào)控Paneth細胞介導(dǎo)的腸道細菌反應(yīng)中發(fā)揮作用,NOD2突變導(dǎo)致CD患者感知腔內(nèi)細菌的能力受損,對某些腸道微生物的易感性增加[19]。NLRP3顯性功能獲得錯義變體R779C增加了巨噬細胞NLRP3炎癥小體的活化和焦亡,在葡聚糖硫酸鈉(DSS)誘導(dǎo)的急性結(jié)腸炎模型中,造血細胞中的NLRP3-R779C導(dǎo)致更嚴重的結(jié)腸炎[20]。NLRP6炎癥小體缺乏的小鼠表現(xiàn)為自發(fā)性腸道增生、炎癥性細胞招募以及DSS引發(fā)的結(jié)腸炎加重[21]。缺乏Nlrp12的小鼠對結(jié)腸炎癥的發(fā)生高度敏感,這與炎癥性細胞因子和趨化因子的產(chǎn)生增加相關(guān),提示NLRP12在維持腸道穩(wěn)態(tài)的關(guān)鍵作用[22]。這些研究表明闡明NLR信號通路的分子機制可能為開發(fā)腸道疾病相關(guān)的治療策略提供新機遇。
圖5 NLRP6炎癥小體調(diào)節(jié)結(jié)腸微生物生態(tài)及結(jié)腸炎風(fēng)險
(圖片源于《Cell》[21])
5. NLR家族與炎癥性關(guān)節(jié)炎的相關(guān)研究
越來越多的研究表明,NLRs在驅(qū)動炎癥性關(guān)節(jié)炎發(fā)病機制中的作用。痛風(fēng)性關(guān)節(jié)炎中尿酸鈉(MSU)晶體激活關(guān)節(jié)內(nèi)的先天細胞,觸發(fā)NLRP3炎癥小體組裝并釋放成熟IL-1β,引發(fā)急性炎癥,并導(dǎo)致關(guān)節(jié)腫脹和劇烈疼痛[23]。NLRP3炎癥小體抑制劑可降低滑膜IL-1β和IL-6水平,限制MSU晶體誘導(dǎo)的關(guān)節(jié)炎[24]。NLRC5可能通過NF-κB信號通路促進成纖維細胞樣滑膜細胞(FLS)增殖和炎癥性細胞因子分泌,進而促進類風(fēng)濕關(guān)節(jié)炎(RA)的進展[25]。NLRP6在RA-FLS中表達較低,與TRIM38和TAB2/3之間的相互作用減弱有關(guān),導(dǎo)致NF-κB的持續(xù)激活,產(chǎn)生促炎細胞因子,最終引發(fā)滑膜組織的炎癥[26]。在抗原誘導(dǎo)關(guān)節(jié)炎模型中,Nlrp12-/-小鼠會出現(xiàn)嚴重關(guān)節(jié)炎,表現(xiàn)為Th17介導(dǎo)的炎癥反應(yīng)加劇,伴有關(guān)節(jié)痛覺敏感、膝關(guān)節(jié)腫脹和中性粒細胞浸潤增加[27]。NOD-1在RA患者滑膜組織的不同細胞類型中強烈表達,在RA慢性且破壞性炎癥中發(fā)揮重要作用[28]。因此,靶向NLRs及相關(guān)炎癥小體可能是炎癥性關(guān)節(jié)炎的潛在治療方式。
6. NLR家族與神經(jīng)退行性疾病的相關(guān)研究
研究表明NLR家族與神經(jīng)退行性疾病的病理生理有關(guān)。在1-甲基-4-苯基-1,2,3,6-四氫吡啶鹽酸鹽(MPTP)誘導(dǎo)的帕金森?。?/span>PD)小鼠中,黑質(zhì)紋狀體軸的NLRC5表達增加[29]。NLRC5缺乏顯著減少MPTP誘導(dǎo)的PD模型中多巴胺(DA)系統(tǒng)退化,并改善了運動功能障礙和紋狀體炎癥。Parkin蛋白通過泛素化并靶向降解NLRP3,抑制炎癥小體形成,防止PD模型中DA神經(jīng)元的退化[30]。在阿爾茨海默?。?/span>AD)中,NLRP3的功能喪失促進了谷氨酰胺和谷氨酸相關(guān)代謝,并增加了小膠質(zhì)細胞Slc1a3的表達,增強代謝活動并提高Aβ肽的清除率[31]。敲低轉(zhuǎn)基因AD模型小鼠大腦中的NLRP1顯著減少神經(jīng)元焦亡,逆轉(zhuǎn)了認知障礙[32]。釋放到細胞質(zhì)中的Aβ誘導(dǎo)的組織蛋白酶降解NLRP10,使NLRP3解離并形成炎癥小體;用重組NLRP10處理膠質(zhì)細胞培養(yǎng)物能減少Aβ誘導(dǎo)caspase 1激活和IL-1β的釋放[33]。這些結(jié)果可能為神經(jīng)退行性疾病新治療策略的開發(fā)提供幫助。
圖6 NLRC5調(diào)節(jié)神經(jīng)炎癥和神經(jīng)元存活
(圖片源于《J Neuroinflammation》[29])
云克隆助力科學(xué)研究,為廣大科研人員提供相關(guān)檢測試劑產(chǎn)品,相關(guān)靶標核心貨號如下:
靶標 | 核心貨號 | 靶標 | 核心貨號 | 靶標 | 核心貨號 |
BIRC2 | E231 | IL8 | A080 | MAPK14 | B206 |
BIRC3 | E232 | IRAK1 | B514 | NAIP | B524 |
CARD9 | P108 | IRAK2 | B515 | NFkB | B824 |
CASP1 | B592 | IRAK3 | B520 | NFkB2 | B825 |
c-Jun | B292 | IRAK4 | B518 | NFKB3 | A616 |
ERK1 | B357 | IRF3 | B589 | NLRC4 | L954 |
ERK2 | A930 | IRF8 | B776 | NLRC5 | M895 |
IFNa | A033 | JNK1 | B156 | NLRP1 | K117 |
IFNb | A222 | JNK2 | D576 | NLRP3 | K115 |
IkBa | B848 | JunB | H765 | NLRP7 | N497 |
IkBb | B849 | MAP2K3 | D563 | NOD1 | K296 |
IkBe | E700 | MAP2K4 | D564 | NOD2 | K295 |
IkBKb | J822 | MAP2K6 | B721 | PYCARD | M075 |
IkBKg | J820 | MAP2K7 | D560 | RelB | B826 |
IKKA | K407 | MAPK11 | B435 | TAB1 | L705 |
IL18 | A064 | MAPK12 | D577 | TAK1 | D567 |
IL1b | A563 | MAPK13 | D578 | TNFa | A133 |
IL6 | A079 |
更多科研試劑,歡迎訪問云克隆官方網(wǎng)站:http://www.19230.cn/
參考文獻
[1]Zhou Y, Yu S, Zhang W. NOD-like Receptor Signaling Pathway in Gastrointestinal Inflammatory Diseases and Cancers. Int J Mol Sci. 2023;24(19):14511.
[2]Alvarez-Simon D, Ait Yahia S, de Nadai P, et al. NOD-like receptors in asthma. Front Immunol. 2022;13:928886.
[3]Ma W, Zhang L, Chen W, et al. Microbiota enterotoxigenic Bacteroides fragilis-secreted BFT-1 promotes breast cancer cell stemness and chemoresistance through its functional receptor NOD1. Protein Cell. 2024;15(6):419-440.
[4]Li K, Yang B, Du Y, et al. The HOXC10/NOD1/ERK axis drives osteolytic bone metastasis of pan-KRAS-mutant lung cancer. Bone Res. 2024;12(1):47.
[5]Lu ZH, Tu GJ, Fu SL, et al. BMI1 induces ubiquitination and protein degradation of Nod-like receptor family CARD domain containing 5 and suppresses human leukocyte antigen class I expression to induce immune escape in non-small cell lung cancer. Kaohsiung J Med Sci. 2022;38(12):1190-1202.
[6]Wada A, Hirohashi Y, Kutomi G, et al. Eribulin is an immune potentiator in breast cancer that upregulates human leukocyte antigen class I expression via the induction of NOD-like receptor family CARD domain-containing 5. Cancer Sci. 2023;114(12):4511-4520.
[7]Zaki MH, Vogel P, Malireddi RK, et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell. 2011;20(5):649-660.
[8]Liu S, Fan W, Gao X, et al. Estrogen receptor alpha regulates the Wnt/β-catenin signaling pathway in colon cancer by targeting the NOD-like receptors. Cell Signal. 2019;61:86-92.
[9]Habibipour L, Sadeghi M, Raghibi A, Sanadgol N, Mohajeri Khorasani A, Mousavi P. The NLRP1 Emerges as a Promising Therapeutic Target and Prognostic Biomarker Across Multiple Cancer Types: A Comprehensive Pan-Cancer Analysis. Cancer Med. 2025;14(8):e70836.
[10]Wang P, Gu Y, Yang J, et al. The prognostic value of NLRP1/NLRP3 and its relationship with immune infiltration in human gastric cancer. Aging (Albany NY). 2022;14(24):9980-10008.
[11]Yu SL, Wong CK, Wong PT, et al. Down-regulated NOD2 by immunosuppressants in peripheral blood cells in patients with SLE reduces the muramyl dipeptide-induced IL-10 production. PLoS One. 2011;6(8):e23855.
[12]Tsao YP, Tseng FY, Chao CW, et al. NLRP12 is an innate immune checkpoint for repressing IFN signatures and attenuating lupus nephritis progression. J Clin Invest. 2023;133(3):e157272.
[13]Su Z, Niu Q, Huang Z, Yang B, Zhang J. Association of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 polymorphisms with systemic lupus erythematosus disease activity and biomarker levels: A case-control study in Chinese population. Medicine (Baltimore). 2020;99(35):e21888.
[14]Lai S, Chen H, Ji X, et al. Knockdown of GSDMD inhibits pyroptosis in psoriasis by blocking the NOD-like receptor signaling pathway. Int Immunopharmacol. 2025;147:114036.
[15]Sarsik S, Far NNE, Mohamed DA, Nassar SO. NOD2 expression in psoriasis before and after treatment with Narrowband Ultraviolet B phototherapy. Arch Dermatol Res. 2025;317(1):260.
[16]Shaw PJ, Barr MJ, Lukens JR, et al. Signaling via the RIP2 adaptor protein in central nervous system-infiltrating dendritic cells promotes inflammation and autoimmunity. Immunity. 2011;34(1):75-84.
[17]Hampe J, Cuthbert A, Croucher PJ, et al. Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet. 2001;357(9272):1925-1928.
[18]Jiang W, Wang X, Zeng B, et al. Recognition of gut microbiota by NOD2 is essential for the homeostasis of intestinal intraepithelial lymphocytes. J Exp Med. 2013;210(11):2465-2476.
[19]Ogura Y, Lala S, Xin W, et al. Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis. Gut. 2003;52(11):1591-1597.
[20]Zhou L, Liu T, Huang B, et al. Excessive deubiquitination of NLRP3-R779C variant contributes to very-early-onset inflammatory bowel disease development. J Allergy Clin Immunol. 2021;147(1):267-279.
[21]Elinav E, Strowig T, Kau AL, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145(5):745-757.
[22]Zaki MH, Vogel P, Malireddi RK, et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell. 2011;20(5):649-660.
[23]So AK, Martinon F. Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol. 2017;13(11):639-647.
[24]Marchetti C, Swartzwelter B, Koenders MI, et al. NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of acute arthritis. Arthritis Res Ther. 2018;20(1):169.
[25]Liu YR, Yan X, Yu HX, et al. NLRC5 promotes cell proliferation via regulating the NF-κB signaling pathway in Rheumatoid arthritis. Mol Immunol. 2017;91:24-34.
[26]Lin Y, Luo Z. NLRP6 facilitates the interaction between TAB2/3 and TRIM38 in rheumatoid arthritis fibroblast-like synoviocytes. FEBS Lett. 2017;591(8):1141-1149.
[27]Prado DS, Veras FP, Ferreira RG, et al. NLRP12 controls arthritis severity by acting as a checkpoint inhibitor of Th17 cell differentiation. FASEB J. 2020;34(8):10907-10919.
[28]Yokota K, Miyazaki T, Hemmatazad H, et al. The pattern-recognition receptor nucleotide-binding oligomerization domain--containing protein 1 promotes production of inflammatory mediators in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 2012;64(5):1329-1337.
[29]Liu Z, Shen C, Li H, et al. NOD-like receptor NLRC5 promotes neuroinflammation and inhibits neuronal survival in Parkinson's disease models. J Neuroinflammation. 2023;20(1):96.
[30]Panicker N, Kam TI, Wang H, et al. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson's disease. Neuron. 2022;110(15):2422-2437.e9.
[31]McManus RM, Komes MP, Griep A, et al. NLRP3-mediated glutaminolysis controls microglial phagocytosis to promote Alzheimer's disease progression. Immunity. 2025;58(2):326-343.e11.
[32]Tan MS, Tan L, Jiang T, et al. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer's disease. Cell Death Dis. 2014;5(8):e1382.
[33]Murphy N, Grehan B, Lynch MA. Glial uptake of amyloid beta induces NLRP3 inflammasome formation via cathepsin-dependent degradation of NLRP10. Neuromolecular Med. 2014;16(1):205-215.