尤物免费在线观看_免费又色又爽又黄的小说软件_亚洲中文字幕另类图片专区_我要看免费的毛片_最近最新高清中文字幕大全_欧美性爱高清在线_性爱视屏爽妇网_高清国内白嫩美女在线观看_国产色久国产综合视频_亚洲黄色操B视频

細胞內(nèi)的“哨兵系統(tǒng)”:解碼NOD樣受體如何調(diào)控健康與疾病

細胞內(nèi)的哨兵系統(tǒng):解碼NOD樣受體如何調(diào)控健康與疾病

 

1. NOD樣受體家族簡介

NOD樣受體(NLR)蛋白家族是一組模式識別受體(PRR),因其在維持組織穩(wěn)態(tài)和通過檢測病原體相關(guān)分子模式(PAMP損傷相關(guān)分子模式(DAMP)抵御細菌、病毒和真菌的感染方面的核心作用而廣受關(guān)注。

1.1 NLR家族結(jié)構(gòu)

NLR蛋白家族的成員具有許多共同的結(jié)構(gòu)特征。它們都具有參與配體識別的C端亮氨酸重復(fù)序列(LRR)結(jié)構(gòu)域、促進自寡聚化和三磷酸腺苷依賴性激活的中心核苷酸結(jié)合寡聚化結(jié)構(gòu)域(NACHT),以及可變的N端效應(yīng)結(jié)構(gòu)域該結(jié)構(gòu)域與接頭分子和下游效應(yīng)子結(jié)合以介導(dǎo)信號轉(zhuǎn)導(dǎo)。N端效應(yīng)結(jié)構(gòu)域是NLRs中最顯著的組成部分,它與各種接頭分子和下游效應(yīng)子結(jié)合以介導(dǎo)信號轉(zhuǎn)導(dǎo),根據(jù)獨特的功能特征可分為五個亞家族:NLRA、NLRB、NLRCNLRPNLRX1。

 

1 NLR家族中各成員的蛋白質(zhì)結(jié)構(gòu)示意圖

(圖片源于《Int J Mol Sci[1]

1.2 NLR家族功能

NLRs分布在胞質(zhì)溶膠中,可識別來自微生物病原體(肽聚糖、鞭毛蛋白、病毒RNA、真菌菌絲等)、宿主細胞(ATP、膽固醇晶體、尿酸等)和環(huán)境來源(明礬、石棉、二氧化硅、合金顆粒、紫外線輻射、皮膚刺激物等)的各種配體。大多數(shù)NLRs充當PRRs,識別上述配體并激活炎癥反應(yīng)。然而,一些NLRs可能不充當PRRs,而是對干擾素等細胞因子做出反應(yīng)。激活的NLRs表現(xiàn)出各種功能,可分為四大類:炎癥小體形成、信號轉(zhuǎn)導(dǎo)、轉(zhuǎn)錄激活和自噬。

1.3 NLR信號傳導(dǎo)途徑

NLR家族的信號機制相對保守。在NLRs與配體特異性結(jié)合后,NACHT結(jié)構(gòu)域自寡聚化,隨后發(fā)生半胱天冬酶募集結(jié)構(gòu)域CARD-CARD相互作用。然后,寡聚化NLRs蛋白與絲氨酸/蘇氨酸受體相互作用蛋白2激酶(RIPK2)相互作用。RIPK2通過IKK和轉(zhuǎn)化生長因子β活化激酶1TAK1)誘導(dǎo)NF-κBMAPK信號通路的激活,從而促進促炎基因的轉(zhuǎn)錄。此外,多種信號通路,包括NOD1/TNF受體相關(guān)因子3TRAF3)通路、NOD2/線粒體抗病毒信號傳導(dǎo)(MAVS)蛋白通路和NOD蛋白/自噬相關(guān)蛋白(ATG)通路,可促進宿主防御和自噬降解

1.4 NLRP3炎性小體

炎性小體是一種寡聚蛋白復(fù)合物,由三部分組成:NLR分子、效應(yīng)分子和偶聯(lián)分子。在NLR家族中,有幾個成員參與炎性小體的形成,包括NLRP1NLRP2、NLRP3、NLRP6、NLRP7、NLRP12NLRC4NAIP。NLRP3炎性小體是近年來研究最廣泛的炎性小體之一。響應(yīng)PAMP/DAMP,二聚化的NLRP3分子聚合兩個PYD效應(yīng)結(jié)構(gòu)域,激活含有CARD的細胞死亡相關(guān)斑點樣蛋白,并通過募集pro-caspase-1促進caspase-1的自催化激活。Caspase-1將兩種非活性細胞因子前體(pro-IL-1βpro-IL-18)分別切割成活性IL-1βIL-18。在某些情況下,caspase-1還可以裂解gasdermin D,產(chǎn)生N末端切割產(chǎn)物,引發(fā)一種稱為細胞焦亡的特定類型的炎癥性死亡。

 

2 NOD1NOD2NLRP3信號通路的簡化表示

(圖片源于《Front Immunol[2]

 

2. NLR家族與癌癥的相關(guān)研究

NLR家族作為先天免疫系統(tǒng)中的重要PRR,在癌癥研究中備受關(guān)注。產(chǎn)腸毒素脆弱擬桿菌(ETBF)通過分泌與NOD1結(jié)合的BFT-1促進乳腺癌細胞的干性和化療耐藥性[3]。抑制NOD1通過靶向乳腺癌干細胞增加乳腺癌的化學(xué)敏感性。轉(zhuǎn)錄因子HOXC10激活NOD1/ERK信號通路,重新編程上皮間質(zhì)轉(zhuǎn)化和骨微環(huán)境,促進KRAS突變肺癌骨轉(zhuǎn)移[4]。BMI1原癌基因誘導(dǎo)NLRC5的泛素化和蛋白質(zhì)降解,并抑制HLA I類表達,這可能有助于非小細胞肺癌(NSCLC)的免疫逃逸[5]。藥物激活NLRC5可增加HLA I類的表達,可有效治療乳腺癌[6]。Nlrp12缺陷小鼠容易誘發(fā)結(jié)腸炎癥和腫瘤,這與炎癥細胞因子、趨化因子和致瘤因子的產(chǎn)生增加有關(guān)[7]。雌激素受體可以通過靶向NLRs來調(diào)節(jié)癌癥中的Wnt/β-catenin信號通路[8]。NLRP1表達減少會導(dǎo)致癌癥進展,其異常表達與對多種抗腫瘤藥物和小化合物的敏感性降低有關(guān)[9]。高NLRP1/NLRP3表達會促進免疫細胞浸潤和胃癌預(yù)后不良[10]。NLR家族在腫瘤微環(huán)境中的雙重作用,使其成為癌癥免疫治療和生物標志物開發(fā)的潛在靶點。

 

3 BMI1NLRC5結(jié)合促進NSCLC的免疫逃逸

(圖片源于《Kaohsiung J Med Sci[5]

 

3. NLR家族與自身免疫疾病的相關(guān)研究

越來越多的證據(jù)表明,NLRs參與了多種自身免疫性疾病的發(fā)生和發(fā)展。細菌暴露可能會增加系統(tǒng)性紅斑狼瘡(SLE)免疫抑制劑初治患者單核細胞中NOD2的表達,從而導(dǎo)致PBMC的異常激活和促炎細胞因子的產(chǎn)生,可能加劇SLE[11]。SLE患者PBMCNLRP12表達水平較低,與IFNA表達和疾病活動性呈負相關(guān)[12]。NLRP3多態(tài)性與SLE疾病活動度增加和血清生物標志物(C4、IL-1βIFN-γ)表達相關(guān)[13]。在咪喹莫特誘導(dǎo)的銀屑病樣小鼠模型中,GSDMD敲低抑制NLR通路,并伴有NLRP3、NOD1、NOD2PYCARD蛋白水平降低,改善了皮膚病變的嚴重程度,減輕了紅斑、表皮厚度和炎癥細胞浸潤[14]。NB-UVB光療有效調(diào)節(jié)NOD2表達,改善銀屑病患者的臨床和組織病理結(jié)局[15]。中樞神經(jīng)系統(tǒng)中的肽聚糖通過NOD1、NOD2RIP2介導(dǎo)的途徑激活浸潤的樹突狀細胞,參與實驗性自身免疫性腦脊髓炎(多發(fā)性硬化癥模型)的發(fā)病機制[16]。這些發(fā)現(xiàn)提示NLRs抑制劑可能有助于自身免疫疾病的治療。

 

4 NLRP12可抑制IFN并減緩狼瘡腎炎進展

(圖片源于《J Clin Invest[12]

 

4. NLR家族與腸道疾病的相關(guān)研究

近年來,多項研究揭示了NLRs在腸道炎癥性疾病中的顯著影響。NOD2的功能喪失突變與人類克羅恩?。?/span>CD)密切相關(guān)[17]。NOD2-/-小鼠對2,4,6-三硝基苯磺酸誘發(fā)結(jié)腸炎的易感性增加[18]。NOD2信號通過識別腸道微生物群和促進IL-15產(chǎn)生維持腸道上皮內(nèi)淋巴細胞數(shù)量并調(diào)控CD易感性。NOD2在調(diào)控Paneth細胞介導(dǎo)的腸道細菌反應(yīng)中發(fā)揮作用,NOD2突變導(dǎo)致CD患者感知腔內(nèi)細菌的能力受損,對某些腸道微生物的易感性增加[19]NLRP3顯性功能獲得錯義變體R779C增加了巨噬細胞NLRP3炎癥小體的活化和焦亡,在葡聚糖硫酸鈉(DSS)誘導(dǎo)的急性結(jié)腸炎模型中,造血細胞中的NLRP3-R779C導(dǎo)致更嚴重的結(jié)腸炎[20]。NLRP6炎癥小體缺乏的小鼠表現(xiàn)為自發(fā)性腸道增生、炎癥性細胞招募以及DSS引發(fā)的結(jié)腸炎加重[21]。缺乏Nlrp12的小鼠對結(jié)腸炎癥的發(fā)生高度敏感,這與炎癥性細胞因子和趨化因子的產(chǎn)生增加相關(guān),提示NLRP12在維持腸道穩(wěn)態(tài)的關(guān)鍵作用[22]。這些研究表明闡明NLR信號通路的分子機制可能為開發(fā)腸道疾病相關(guān)的治療策略提供新機遇。

 

5 NLRP6炎癥小體調(diào)節(jié)結(jié)腸微生物生態(tài)及結(jié)腸炎風(fēng)險

(圖片源于《Cell[21]

 

5. NLR家族與炎癥性關(guān)節(jié)炎的相關(guān)研究

越來越多的研究表明,NLRs在驅(qū)動炎癥性關(guān)節(jié)炎發(fā)病機制中的作用。痛風(fēng)性關(guān)節(jié)炎中尿酸鈉(MSU)晶體激活關(guān)節(jié)內(nèi)的先天細胞,觸發(fā)NLRP3炎癥小體組裝并釋放成熟IL-1β,引發(fā)急性炎癥,并導(dǎo)致關(guān)節(jié)腫脹和劇烈疼痛[23]NLRP3炎癥小體抑制劑可降低滑膜IL-1βIL-6水平,限制MSU晶體誘導(dǎo)的關(guān)節(jié)炎[24]NLRC5可能通過NF-κB信號通路促進成纖維細胞樣滑膜細胞(FLS)增殖和炎癥性細胞因子分泌,進而促進類風(fēng)濕關(guān)節(jié)炎(RA)的進展[25]。NLRP6RA-FLS中表達較低,與TRIM38TAB2/3之間的相互作用減弱有關(guān),導(dǎo)致NF-κB的持續(xù)激活,產(chǎn)生促炎細胞因子,最終引發(fā)滑膜組織的炎癥[26]。在抗原誘導(dǎo)關(guān)節(jié)炎模型中,Nlrp12-/-小鼠會出現(xiàn)嚴重關(guān)節(jié)炎,表現(xiàn)為Th17介導(dǎo)的炎癥反應(yīng)加劇,伴有關(guān)節(jié)痛覺敏感、膝關(guān)節(jié)腫脹和中性粒細胞浸潤增加[27]。NOD-1RA患者滑膜組織的不同細胞類型中強烈表達,在RA慢性且破壞性炎癥中發(fā)揮重要作用[28]。因此,靶向NLRs及相關(guān)炎癥小體可能是炎癥性關(guān)節(jié)炎的潛在治療方式。

 

6. NLR家族與神經(jīng)退行性疾病的相關(guān)研究

研究表明NLR家族與神經(jīng)退行性疾病的病理生理有關(guān)。在1-甲基-4-苯基-1,2,3,6-四氫吡啶鹽酸鹽(MPTP)誘導(dǎo)的帕金森?。?/span>PD)小鼠中,黑質(zhì)紋狀體軸的NLRC5表達增加[29]NLRC5缺乏顯著減少MPTP誘導(dǎo)的PD模型中多巴胺(DA)系統(tǒng)退化,并改善了運動功能障礙和紋狀體炎癥。Parkin蛋白通過泛素化并靶向降解NLRP3,抑制炎癥小體形成,防止PD模型中DA神經(jīng)元的退化[30]。在阿爾茨海默?。?/span>AD)中,NLRP3的功能喪失促進了谷氨酰胺和谷氨酸相關(guān)代謝,并增加了小膠質(zhì)細胞Slc1a3的表達,增強代謝活動并提高肽的清除率[31]。敲低轉(zhuǎn)基因AD模型小鼠大腦中的NLRP1顯著減少神經(jīng)元焦亡,逆轉(zhuǎn)了認知障礙[32]。釋放到細胞質(zhì)中的誘導(dǎo)的組織蛋白酶降解NLRP10,使NLRP3解離并形成炎癥小體;用重組NLRP10處理膠質(zhì)細胞培養(yǎng)物能減少誘導(dǎo)caspase 1激活和IL-1β的釋放[33]。這些結(jié)果可能為神經(jīng)退行性疾病新治療策略的開發(fā)提供幫助。

 

6 NLRC5調(diào)節(jié)神經(jīng)炎癥和神經(jīng)元存活

(圖片源于《J Neuroinflammation[29]

 

云克隆助力科學(xué)研究,為廣大科研人員提供相關(guān)檢測試劑產(chǎn)品,相關(guān)靶標核心貨號如下:

靶標

核心貨號

靶標

核心貨號

靶標

核心貨號

BIRC2

E231

IL8

A080

MAPK14

B206

BIRC3

E232

IRAK1

B514

NAIP

B524

CARD9

P108

IRAK2

B515

NFkB

B824

CASP1

B592

IRAK3

B520

NFkB2

B825

c-Jun

B292

IRAK4

B518

NFKB3

A616

ERK1

B357

IRF3

B589

NLRC4

L954

ERK2

A930

IRF8

B776

NLRC5

M895

IFNa

A033

JNK1

B156

NLRP1

K117

IFNb

A222

JNK2

D576

NLRP3

K115

IkBa

B848

JunB

H765

NLRP7

N497

IkBb

B849

MAP2K3

D563

NOD1

K296

IkBe

E700

MAP2K4

D564

NOD2

K295

IkBKb

J822

MAP2K6

B721

PYCARD

M075

IkBKg

J820

MAP2K7

D560

RelB

B826

IKKA

K407

MAPK11

B435

TAB1

L705

IL18

A064

MAPK12

D577

TAK1

D567

IL1b

A563

MAPK13

D578

TNFa

A133

IL6

A079





更多科研試劑,歡迎訪問云克隆官方網(wǎng)站:http://www.19230.cn/

 

參考文獻

[1]Zhou Y, Yu S, Zhang W. NOD-like Receptor Signaling Pathway in Gastrointestinal Inflammatory Diseases and Cancers. Int J Mol Sci. 2023;24(19):14511.

[2]Alvarez-Simon D, Ait Yahia S, de Nadai P, et al. NOD-like receptors in asthma. Front Immunol. 2022;13:928886.

[3]Ma W, Zhang L, Chen W, et al. Microbiota enterotoxigenic Bacteroides fragilis-secreted BFT-1 promotes breast cancer cell stemness and chemoresistance through its functional receptor NOD1. Protein Cell. 2024;15(6):419-440.

[4]Li K, Yang B, Du Y, et al. The HOXC10/NOD1/ERK axis drives osteolytic bone metastasis of pan-KRAS-mutant lung cancer. Bone Res. 2024;12(1):47.

[5]Lu ZH, Tu GJ, Fu SL, et al. BMI1 induces ubiquitination and protein degradation of Nod-like receptor family CARD domain containing 5 and suppresses human leukocyte antigen class I expression to induce immune escape in non-small cell lung cancer. Kaohsiung J Med Sci. 2022;38(12):1190-1202.

[6]Wada A, Hirohashi Y, Kutomi G, et al. Eribulin is an immune potentiator in breast cancer that upregulates human leukocyte antigen class I expression via the induction of NOD-like receptor family CARD domain-containing 5. Cancer Sci. 2023;114(12):4511-4520.

[7]Zaki MH, Vogel P, Malireddi RK, et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell. 2011;20(5):649-660.

[8]Liu S, Fan W, Gao X, et al. Estrogen receptor alpha regulates the Wnt/β-catenin signaling pathway in colon cancer by targeting the NOD-like receptors. Cell Signal. 2019;61:86-92.

[9]Habibipour L, Sadeghi M, Raghibi A, Sanadgol N, Mohajeri Khorasani A, Mousavi P. The NLRP1 Emerges as a Promising Therapeutic Target and Prognostic Biomarker Across Multiple Cancer Types: A Comprehensive Pan-Cancer Analysis. Cancer Med. 2025;14(8):e70836.

[10]Wang P, Gu Y, Yang J, et al. The prognostic value of NLRP1/NLRP3 and its relationship with immune infiltration in human gastric cancer. Aging (Albany NY). 2022;14(24):9980-10008.

[11]Yu SL, Wong CK, Wong PT, et al. Down-regulated NOD2 by immunosuppressants in peripheral blood cells in patients with SLE reduces the muramyl dipeptide-induced IL-10 production. PLoS One. 2011;6(8):e23855.

[12]Tsao YP, Tseng FY, Chao CW, et al. NLRP12 is an innate immune checkpoint for repressing IFN signatures and attenuating lupus nephritis progression. J Clin Invest. 2023;133(3):e157272.

[13]Su Z, Niu Q, Huang Z, Yang B, Zhang J. Association of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 polymorphisms with systemic lupus erythematosus disease activity and biomarker levels: A case-control study in Chinese population. Medicine (Baltimore). 2020;99(35):e21888.

[14]Lai S, Chen H, Ji X, et al. Knockdown of GSDMD inhibits pyroptosis in psoriasis by blocking the NOD-like receptor signaling pathway. Int Immunopharmacol. 2025;147:114036.

[15]Sarsik S, Far NNE, Mohamed DA, Nassar SO. NOD2 expression in psoriasis before and after treatment with Narrowband Ultraviolet B phototherapy. Arch Dermatol Res. 2025;317(1):260.

[16]Shaw PJ, Barr MJ, Lukens JR, et al. Signaling via the RIP2 adaptor protein in central nervous system-infiltrating dendritic cells promotes inflammation and autoimmunity. Immunity. 2011;34(1):75-84.

[17]Hampe J, Cuthbert A, Croucher PJ, et al. Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet. 2001;357(9272):1925-1928.

[18]Jiang W, Wang X, Zeng B, et al. Recognition of gut microbiota by NOD2 is essential for the homeostasis of intestinal intraepithelial lymphocytes. J Exp Med. 2013;210(11):2465-2476.

[19]Ogura Y, Lala S, Xin W, et al. Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis. Gut. 2003;52(11):1591-1597.

[20]Zhou L, Liu T, Huang B, et al. Excessive deubiquitination of NLRP3-R779C variant contributes to very-early-onset inflammatory bowel disease development. J Allergy Clin Immunol. 2021;147(1):267-279.

[21]Elinav E, Strowig T, Kau AL, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145(5):745-757.

[22]Zaki MH, Vogel P, Malireddi RK, et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell. 2011;20(5):649-660.

[23]So AK, Martinon F. Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol. 2017;13(11):639-647.

[24]Marchetti C, Swartzwelter B, Koenders MI, et al. NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of acute arthritis. Arthritis Res Ther. 2018;20(1):169.

[25]Liu YR, Yan X, Yu HX, et al. NLRC5 promotes cell proliferation via regulating the NF-κB signaling pathway in Rheumatoid arthritis. Mol Immunol. 2017;91:24-34.

[26]Lin Y, Luo Z. NLRP6 facilitates the interaction between TAB2/3 and TRIM38 in rheumatoid arthritis fibroblast-like synoviocytes. FEBS Lett. 2017;591(8):1141-1149.

[27]Prado DS, Veras FP, Ferreira RG, et al. NLRP12 controls arthritis severity by acting as a checkpoint inhibitor of Th17 cell differentiation. FASEB J. 2020;34(8):10907-10919.

[28]Yokota K, Miyazaki T, Hemmatazad H, et al. The pattern-recognition receptor nucleotide-binding oligomerization domain--containing protein 1 promotes production of inflammatory mediators in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 2012;64(5):1329-1337.

[29]Liu Z, Shen C, Li H, et al. NOD-like receptor NLRC5 promotes neuroinflammation and inhibits neuronal survival in Parkinson's disease models. J Neuroinflammation. 2023;20(1):96.

[30]Panicker N, Kam TI, Wang H, et al. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson's disease. Neuron. 2022;110(15):2422-2437.e9.

[31]McManus RM, Komes MP, Griep A, et al. NLRP3-mediated glutaminolysis controls microglial phagocytosis to promote Alzheimer's disease progression. Immunity. 2025;58(2):326-343.e11.

[32]Tan MS, Tan L, Jiang T, et al. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer's disease. Cell Death Dis. 2014;5(8):e1382.

[33]Murphy N, Grehan B, Lynch MA. Glial uptake of amyloid beta induces NLRP3 inflammasome formation via cathepsin-dependent degradation of NLRP10. Neuromolecular Med. 2014;16(1):205-215.